Antiproton Production at Fermilab

V. Nagaslaev (FNAL)

DPF-09, Detroit

Antiproton Production at Fermilab: Outline

Introduction to the machine operation

Overview of the machine development in last 5 years

Current machine performance

Experimental options with antiprotons

Introduction: Machine operation

Introduction: Antiproton Source

Introduction: Machine operation: MI-8 line

Introduction: Machine operation: Main Injector

Introduction: Machine operation: P1-P2-AP1 line

Introduction: Machine operation: P1-P2-AP1 line

Introduction: Machine operation: AP2 line

Introduction: Machine operation: Debuncher

Introduction: Machine operation: Debuncher

Introduction: Machine operation: Debuncher

Introduction: Machine operation: Accumulator

Accumulator ring:

Inject to +80 MeV

RF move to deposition

Moving to Core: -60 MeV

with Stochastic cooling

RF unstack for extraction

Stochastic cooling:

Stack- tail momentum

Core momentum

Core transverse

Introduction: Machine operation: Accumulator

Inject to +80 MeV

RF move to deposition

Moving to Core: -60 MeV

with Stochastic cooling

RF unstack for extraction

Stochastic cooling:

Stack-tail

Core momentum

Core transverse

Introduction: Machine operation: AP3-AP1-P2-P1

Antiproton Source parameters

Beam momentum	8.9 GeV/c	
Peak stacking rate	27.6 e10/hr	
Average stacking rate	24 e10/hr	
Average production efficiency	22 e-6 $\frac{\overline{p}}{p}/p$	
Typical stack size	25 e10	
Maximum stack size	310 e10	
Stacking cycle	2.2 sec	
Time between transfers	50 min	
Total beam compression	10 ⁷	
Transfer to RR efficiency	96%	

(Terminology: "1mA" = 10^{10} pbars)

Main machine developments since 2005

There's been a remarkable progress with the Tevatron integrated luminosity since the beginning of Run-II. A crucial factor in this progress was the growth of antiproton production capability. Average weekly production has grown a factor of 3.5 since 2005.

Main improvements since 2005:

- Target and collection lens
- AP2/Debuncher acceptance
- Debuncher stochastic cooling
- Accumulator stochastic cooling
- Lattice (optics) modifications
- Rapid transfers

 (no luxury of incremental changes)

Production target

- Optimum yield with narrow beam spot, ~170u
- · After implementing slip-stacking in MI issues with target lifetime
- Engineering team working on the target design
- Eventually come up with a reliable solution, including the target, motion and cooling
- · Beam sweeping
- Target is rotated by 15 degrees after each pulse

Previous design

Latest design-B

Latest design-C

Collection lens

- Li cylinder, r=10mm, L=15cm
- Focusing by axial current (600kA)
- Extreme heat and mechanical load
- Lifetime issues at high gradients
- New design developed:
 - Titanium body
 - Diffusion bonding
 - More efficient cooling
 - New transformer design

Old design

New design

AP2/Debuncher acceptance

- Run-II: goal increasing AP2/Debuncher acceptance to $35\pi/35\pi$ (H/V)
- March 2005 Debuncher acceptance $30\pi/25\pi$ (H/V)
- A lot of work before 2005 to build new hardware and instrumentation
- Requested 2 weeks of studies in December; Tevatron failure for 3 weeks:
 - studies in shifts around the clock (Study-O-Rama)
 - component centering, correcting orbits
 - aperture limitations searches (new method)
- Got 2 more weeks in January 2006
 - searches continued
 - removed Debuncher Schottkys
 - installed new trims in AP2
 - lattice studies

- Extraction kicker was modified to improve aperture
- · New lattice was developed shortly after, and that completed the goal
- Design acceptance ~ $40\pi/40\pi$, actual (measured) $35\pi/35\pi$

Debuncher Stochastic cooling

- fast 2 sec cycle time
- wide acceptance in dP
- · very low signal cryogenic
- 8 PU bands, 4 kicker bands, 4-8 GHz
- Total kicker power 10kW

Debuncher stochastic cooling kicker tank

- Run-II upgrade: bands 3&4 tanks added
- Main improvement after upgrade: Double turn notch filter
 - switched in at 1 sec
 - 10% reduction of final energy spread

Accumulator stochastic cooling

- 4 systems:
 - StackTail Momentum 2-4 GHz
 - Core Momentum 2-4 GHz
 - Core Momentum 4-8 GHz
 - Core Betatron 4-8 GHz
- Main focus: StackTail
- 2006: switched focus from CM 2-4 to CM 4-8
- Detailed studying numerical model developed
- Optimization, reconfiguration
 - Hybrid flip,
 - "Leg 3" resurrected
- 2007 new equalizer
- Strong limitation: ST heating the Core
- Swapping 2 ST kicker tanks with 2 CM tanks
- Notch filter #3, BAW → SC, increased depth
- Equalizer for Core momentum
- New optics (increased eta)

System gain versus frequency before and after new equalizer installed

Lattice modifications

Accumulator:

- Slip factor increase by 15%:
- helps stochastic cooling

 $J_{\text{max}} = T_0 |\eta| W^2 x_d$

- Address transverse heating:
 - Mitigate heating resonances
 - Suppress dispersion in straights
 - Lower beta-functions (IBS)
- Apertures:
 - Reduce beam size at tight locations

Debuncher:

- Increase machine acceptance
- Correct P-K phase advances for SC

2005: $30\pi/25\pi$ mm·mrad

2006: $35.3\pi/34.6\pi \text{ mm}\cdot\text{mrad}$

Eliminated the need in replacing B4 cooling tanks

Rapid Transfers

Speeding up transfers:

- More time for stacking (13%)
- Smaller optimal stack size

Challenges:

- Thousands of devices involved
- Incremental changes
- Intelligent procedure
- Transfer efficiency

New hardware:

- BPM upgrade
- ramping magnets in AP1
- RF modifications shorter bunches

Transfer efficiency:

- Orbit monitoring
- MI injections damper
- Optics modifications
- 2006: 75%-95%
- Now: routinely 96%

Horizontal beam size injection oscillations

Antiproton source performance

- 2005 start combination shots to TeV
- 2006 only RR shots
- 2005-2006: AP2/Deb acceptance
- after 2006:
 - Stochastic cooling
 - Target
 - Lens
- 2006 also: start of Rapid Transfer effort

World's antimatter production

	FNAL	CERN	GSI FAIR
Average production rate [e10/hr]	24		
Peak production rate [e10/hr]	27	7.5	3.5
Ready to start Experiments	2011	-	2015

What are we going to do with this facility when Run-II ends?

- Scope of this question spans beyond Fermilab
- We have not yet passed the decision point
- HEP community should think about it again NOW!

Experimental options: In the past

E760 (1990-1991) E835 (1996-2000)

Charmonium experiments

Charmonium physics and continuum cross-sections

Precision measurements of number of parameters, still leading in PDG tables

Detector pit is empty now!

Experimental options: In the past

APEX (T861/E868, 1995-1996)

Antiproton lifetime experiment

$$p \rightarrow e + X$$
 (7 modes)

$$\frac{-}{p} \to \mu + X \quad \text{(6 modes)}$$

Experimental options: In the past

E862 (1996-1997)

Production of relativistic antihydrogen

Production and successful detection with no background has been demonstrated.

Experiment has been proposed to fine spectroscopic measurements including the Lamb shift (1-5% level)

Experimental options

What can be done now?

Precision measurements with Charmonium Precision measurements of XYZ states

Measurements of continuum

Searches (excited C, exotics, glueballs)

Asymmetries in Hyperon Decays (CP-violation)

Rare hyperon decays

Relativistic Antihydrogen (Lamb shift)

Open Charm

...many others!

For details see Dan Kaplan's talk at the parallel session "Hadron spectroscopy I"

Experimental options: g-2

- Using Fermilab beams to continue BNL g-2 experiments
- Valuable experiment at low cost and short time scale
- Potential: to improve experimental uncertainty from 0.54ppm to 0.14ppm
- Proposed to run parasitically with neutrino programs and before mu2e
- Use 8 GeV protons for 3.1 GeV pion production on the Pbar target
- Using Debuncher in a beam line mode
- Advantage of large Debuncher aperture and long decay path
 - Few technical challenges
 - Hardly compatible with antiproton program
 - Challenge to squeeze between Run-II and mu2e and low budget

Experimental options: mu2e

Charged Lepton Flavor Violation

- In 2 years running : Rµe ~ 2e-17
- 4 orders lower than current limit
- Many models predict e-15

Using Pbar Source:

- Natural time structure
- Slow spill extraction
 - Challenges of high intensity
 - High radiation issues
 - Extinction at <10-9
 - End of the antiproton program

Options other than using the Pbar source are possible!

1. There has been a remarkable progress in antiproton production at Fermilab during Run-II

- There has been a remarkable progress in antiproton production at Fermilab during Run-II
- 2. Fermilab antiproton program is now and will be the world most powerful source of antiproton production for decades

- There has been a remarkable progress in antiproton production at Fermilab during Run-II
- 2. Fermilab antiproton program is now and will be the world most powerful source of antiproton production for decades
- 3. Rich physics with antiprotons may become available, with plenty of opportunities for PhD research

- There has been a remarkable progress in antiproton production at Fermilab during Run-II
- 2. Fermilab antiproton program is now and will be the world most powerful source of antiproton production for decades
- 3. Rich physics with antiprotons may become available, with plenty of opportunities for PhD research
- 4. Interest and input from physics community is important

Backup

Experimental options: Alternatives

Project X, ICD-II (presented at NuFact-09)

